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Asymptotic and numeric study of eigenvalues of the double
confluent Heun equation
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70550 Stuttgart, Germany

Received 14 November 1997

Abstract. The spectrum of the boundary problems related to the double confluent case of
Heun’s differential equation is studied numerically and by means of asymptotic methods. The
calculation is based on an application of the central two-point connection problem for this
equation using Jaffé expansions and Birkhoff sets of irregular difference equations of Poincaré–
Perron type. The numerical evaluation based on this approach is compared with results of
asymptotic calculations showing several quite interesting features of the eigenvalue curves and
of the solution of the equation itself.

1. Introduction

The double confluent Heun equation (DHE) originates from the Heun equation—the
Fuchsian equation with four singularities—by means of a confluence process when two
regular singularities coalesce pair-wise into an irregular one [8]. From the analytical and
the numerical side the solutions of the DHE exhibit very specific features that make them
useful in some specific physical problems as for instance in gravitational theory [5]. More
precisely, in the case of the DHE there are no convergent Frobenius solutions since there
are no regular singularities as is normally the case for other special functions. Moreover,
the DHE has a rather specific structure of Stokes lines and Stokes domains [7].

In this paper—after a discussion of the differential equation, its generalized Riemann
scheme, some basic forms and simple transformations—we give an asymptotic study
resulting in the eigenfunctions and eigenvalues which arise in the central two-point
connection problem of the two singularities along the real axis. Thereafter, we propose
a numeric procedure for computing the eigenvalues. It is based on an extension of Jaffé
expansions introduced by Lay [5] and on an algorithm and programming code developed
by Bay et al [2]. Moreover, we emphasize polynomial solutions which appear at certain
restrictions. Either of the two presented approaches give numerical results that are in good
agreement with one another.

2. Forms of equations

The canonical form of the double confluent Heun equation (DHE) reads (see [10])

z2 d2y(z)

dz2
+ (−z2+ cz+ t)dy(z)

dx
+ (−az+ λ)y(z) = 0 z ∈ C. (1)
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Here, c, a are local parameters defining the behaviour of the solutions at the irregular
singularities located atz = 0, z = ∞; t is a scaling parameter defining the location of the
turning points. The parameterλ is the so-called accessory parameter.

The behaviour of the solutions at the singularities is exposed in the corresponding
generalized Riemann scheme [11]

2 2
0 ∞ ; z
0 a ; λ

2− c c − a
0 0
t 1

 . (2)

In the first row of the generalized Riemann scheme the s-ranks [10] of the singularities are
exhibited. In the second row the locations of the singularities are exposed and in the further
rows the characteristic exponents of the solutions are written. According to the values of
these characteristic exponents there exist two pairs of local solutions at the singularities of
(1) that behave as

y1(a, c; z = 0, z) = 1(1+ o(1)) y2(a, c; z = 0, z) = z2−cet/z(1+ o(1))

asz→+0

y1(a, c; z = ∞, z) = z−a(1+ o(1)) y2(a, c; z = ∞, z) = za−cez(1+ o(1))

asz→+∞.

(3)

Although equation (1) is not written in a self-adjoint form the corresponding singular
boundary-eigenvalue problem defined att > 0, z ∈ [0,∞[ can be posed by the boundary
conditions

|y(0)| <∞ e−z/2y(z)→z→∞ 0 (4)

the parameterλ playing the role of the eigenvalue parameter.
From (3) it is clear that the eigensolutions of the boundary problem (1)–(4) are

proportional toy1(a, c; z = 0, z) at zero and are proportional toy1(a, c; z = ∞, z) at
infinity. It also follows the necessary condition for an eigensolution to be a polynomial as

a = −n n = 0, 1, . . . . (5)

Beyond the canonical form other forms of the double confluent equation may be
appropriate. First, we carry out a transformation to a more reasonable scaling of the
independent variablez when the transition points appear at finite distances:

t 7→ t2 z 7→ tz λ 7→ tλ (6)

H⇒ z2 d2y(z)

dz2
+ (cz− t (z2− 1))

dy(z)

dz
+ t (−az+ λ)y(z) = 0. (7)

Taking t (z2 − 1) as the leading term in equation (7) at large values oft one may see that
the transition points are located atz = 0, z = −1, z = 1, z = ∞. This is even better seen
from the normal form of the DHE

z2 d2w(z)

dx2
+
(
t

[( c
2
− a

)
z+

(
1− c

2

) 1

z

]
− t2 (z

2− 1)2

4z2

)
w + t λ̃w = 0 (8)

which follows from (7) by means of the substitution

y(z) = exp

[
t

2

(
z+ 1

z

)]
z−

c
2w(z) λ̃ := λ− c(c − 2)

4t
. (9)
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For studying boundary-eigenvalue problems the self-adjoint form of the DHE is used
conventionally

d

dz

(
z2 dv(z)

dz

)
+
(
t

[( c
2
− a

)
z+

(
1− c

2

) 1

z

]
− t2 (z

2− 1)2

4z2

)
v + t λ̃v = 0 (10)

where

w(z) = zv(z). (11)

We introduce new parameters

a′ := a − 1 c′ := c

2
− 1. (12)

In terms of these parameters equation (8) is rewritten as

z2 d2w(z)

dz2
−
(
t2
(z2− 1)2

4z2
+ t

(
a′z+ c′ 1− z

2

z

))
w + t λ̃w = 0. (13)

Equation (13) does not change under the simultaneous substitutions

z→−z a′ → −a′ c′ → −c′. (14)

This means that if we have studied the boundary-eigenvalue problem on the positive
real half-axis it is no more necessary to study it on the negative real half-axis since the
corresponding eigenvaluesλ̃− are obtained from the eigenvalues of the boundary-eigenvalue
problem on the positive half-axis̃λ+ with the help of the following formula:

λ̃−(a′, c′) = λ̃+(−a′,−c′). (15)

The forms (8), (10), (13) of the DHE are appropriate for studying asymptotic expansions.
Another form of the DHE is needed in order to perform the numeric algorithm. First,

we make the term−atz vanishing in equation (6) by substituting for the new dependent
variable

y(z) = (z− 1)au(z). (16)

The corresponding equation for the functionu(z) reads

z2 d2u(z)

dz2
+
(
−tz2+ t + cz− 2az2

z+ 1

)
du(z)

dz
+
(
−ta − acz

z+ 1
+ a(a + 1)z2

(z+ 1)2
+ λ̃

)
u = 0.

(17)

Equation (17) has the advantage that the required solution has finite limits at both endpoints
of the relevant interval [0,∞[.

The next step is the transformation to a new independent variableξ

ξ := z− 1

z+ 1
(18)

in which the points of the complexz-plane convert into the points of the complexξ -plane
according to

z 7→ ξ ⇒ −1 7→ ∞ 0 7→ −1 1 7→ 0 ∞ 7→ 1

and the original relevant interval [0,∞[ converts into the interval [−1, 1]. This
transformation leads to the equation

(1− ξ2)2
d2u(ξ)

dξ2
+ {−8tξ − 2(1− ξ2)[c + (a + 1)(1+ ξ)]}du(ξ)

dξ

+{(1+ ξ)[a(a + 1)(1+ ξ)− 2ac] − 4ta + 4t λ̃}u(ξ) = 0. (19)
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Figure 1. The Stokes set in the complexz-plane.

Figure 2. The Stokes set in the complexξ -plane.

3. Asymptotic study

Here, methods valid in the case of ‘close’ turning points and described in the book [9] are
used.

The ‘potential’ related to equations (8), (10), (13) has the shape of two potential wells
separated by an irregular singularity at zero.

The Stokes lines defined by

=
∫ z

±1

(
1

2
− 1

2z2

)
dz = 0 (20)

comprise the real axis and the unit circle. The anti-Stokes lines defined by

<
∫ z

±1

(
1

2
− 1

2z2

)
dz = 0 (21)

and represented in polar coordinatesr, ϕ on thez-plane are

r(ϕ) = 1± sin(ϕ)

cos(ϕ)
. (22)

Stokes as well as anti-Stokes lines on thez- as well as on theξ -plane are sketched in
figures 1 and 2.

We look for asymptotic solutionswn(z) of the posed boundary problem (13), (4) in the
form

wn(z) = exp

(
− t

∫ z

1
sn(z, t)dz

)
(23)
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where the new semiclassical variables(z, t) and the eigenvalues̃λn(t) are expanded in
reciprocal powers oft :

sn(z, t) =
∞∑
k=0

snk(z)t
−k (24)

λ̃n(t) =
∞∑
k=0

λnk(a, c)t
−k. (25)

It is important to stress that in any approximation when a finite number of terms is taken into
account the function on the right-hand side of (23) is single valued. This is a consequence
of the quantization condition discussed below.

The quantization condition for the low-lying eigenvalues is given by [3]

− t Res|z=1sn(t, z) = n (26)

wheresn(t, z) is obtained from an asymptotic expansion (24) by recursion processes of

z2s2− (z
2− 1)2

4z2
+ 1

t

(
−ds(z)

dz
z2− a′z− c′ 1− z

2

z
+ λ̃

)
= 0. (27)

The two first terms of the expansion (24) are

sn0 = z2− 1

2z2
sn1 = −c

′

z
+ a

′ + 1− λn0

2(z− 1)
+ a

′ + 1+ λn0

2(z+ 1)
. (28)

The quantization condition (26) gives

λn0 = 2n+ a′ + 1. (29)

The computation ofsn2 is rather tiresome and we only give the final result for the correction
term to the eigenvalues

λn1 = 1
2n(n+ a′ + 1)− 1

4(a
′ + 1)(a′ + 2)+ c′(2+ a′ − c′). (30)

It is significant and important to realize that the representation (23) is valid all over
the complexz-plane without adding another exponential term. The proof follows from
the general theory of the Stokes phenomenon as is exhibited in [7]. In this sense the
eigenfunctions reveal no Stokes phenomenon. This differs from the behaviour of the
eigenfunctions of the other confluent cases of Heun’s equations!

The eigenvalues of the boundary-eigenvalue problem on the negative half-axis are
obtained by means of the symmetry relation (15). In [12] it has been found that every
confluent case belonging to the Heun class, with the exception of the DHE, exhibits
the phenomenon of avoided crossings of eigenvalues related to two different potential
wells. In the case of DHE we have no phenomenon of avoided crossings but actual
crossings of eigenvalue curves which happen approximately at integer values ofa′. This
does not contradict the theory which forbids degeneration of the eigenfunctions since
these eigenfunctions relate to completely disconnected boundary-eigenvalue problems. The
numeric study of this phenomenon is given below.

The values ofλ̃ and a′ at which crossings of eigenvalues occur reveal the following
very specific feature of the Stokes phenomenon: at these points the eigenfunctionsy−m(z)
andy+n (z) related correspondingly to central two-point connection problems on the left and
on the right half-axis of the real axis can be taken as asymptotic basis and in this basis the
Stokes matrix is trivial (i.e. it is diagonal without mixing matrix elements). As far as the
authors know DHE is the only example of such a behaviour.
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It is interesting to mention that at

a′ = −n− 1

polynomial eigenfunctions appear for which the formula for the eigenvalues simplifies to

λ̃n = n+ 1

t

(
−1

4
n(n− 1)+ c′(1− n− c′)

)
+O(t−2). (31)

The polynomial solutions cannot arise at crossing points since this would lead to a reduction
of the two linearly independent solutions to a unique solution and thus to a degeneration of
the fundamental system of the differential equation.

4. Numerical algorithm

The numerical calculation of the eigenvalues and the eigenfunctions within the theory
of central two-point connection problems has been extensively exhibited elsewhere (see
[1, 2, 4–6, 13]). Therefore, we may restrict ourselves in the following to a brief account.

The relevant solution of (19) may be expanded in a convergent series aboutξ = 0:

u(ξ) =
k=∞∑
k=0

gkξ
k. (32)

The coefficients of (32) obey a fourth-order difference equation of Poincaré–Perron type
with an initial condition:

g−1 = g−2 = 0

g0, g1 arbitrary

2g2+ 2(c − a − 1)g1+ (4(tλ− ta)+ a(a + 1)− 2ca)g0 = 0

6g3+ 4(c − a − 1)g2+ {−8t − 2(a + 1)+ 4(tλ− ta)+ a(a + 1)− 2ca}g1

+2(a(a + 1)− ca)g0 = 0(
1+ α2

k
+ β2

k2

)
gk+2+

(
α1

k
+ β1

k2

)
gk+1+

(
−2+ α0

k
+ β0

k2

)
gk

+
(
α−1

k
+ β−1

k2

)
gk−1+

(
1+ α−2

k
+ β−2

k2

)
gk−2 = 0 k > 2.

(33)

The coefficients in (33) are given by

α2 := 3 β2 := 2

α1 := 2(c − a − 1), β1 := 2(c − a − 1)

α0 := −8t − 2a β0 := 4(tλ− ta)+ a(a + 1)− 2ca

α−1 := −2(c − a − 1) β−1 := −2(a − 1)(c − a − 1)

α−2 := 2a − 3 β−2 := (a − 1)(a − 2)

and its Birkhoff set [5, 13] is

sm(k) = %km exp(γmk
1
2 )krm

[
1+ Cm1

k
1
2

+ Cm2

k
2
2

+ · · ·
]

m = 1, 2, 3, 4 (34)
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with
%m = 1 m = 1, 2

%m = −1 m = 3, 4

γm1 = (−1)m
√

8t m = 1, 2, 3, 4

r1 = r2 = −1+ a − c
2

r3 = r4 = −2− c
2
.

(35)

The general solution of (33) may be put asymptotically in the form

gk ∼
4∑

m=1

Lmsm(k) (36)

with arbitrary coefficientsLi being dependent on all parameters of the differential equation
except the indexk.

The series (32) have to converge atξ = ±1 for λ being an eigenvaluẽλ = λ̃n. Then,
it necessarily follows that in this case the asymptotic behaviour of the coefficientsgn must
be described by the exponentially decreasing Birkhoff solutions in (34), (36). This leads to
the eigenvalue conditions (see [13])

L2(λ̃; t, a′, c′) = L4(λ̃; t, a′, c′) = 0. (37)

The consequence of the two eigenvalue conditions in (37) is a set of two eigenvalue
parameters(λ̃; g1) while g0 in (33) may be normalized to unity without loss of generality.
Thus,g1 in (32) plays the role of a second eigenvalue parameter. As a result of our procedure
we have to look for a null-dimensional set(λ̃n; g1n) in a two-parameter space(λ̃; g1). In the
following we exhibit how to convert this problem into an appropriate numerical procedure.

As a first step we solve the difference equation (33) by abackward recursionas outlined
in [13]. Using the initial conditions

g
(1)
N−1 = 1 g

(1)
N = g(1)N+1 = g(1)N+2 = 0

for a sufficiently large valueN we calculate the coefficientsg(1)−1, g
(1)
−2 representing an

exponentiallydecreasingparticular solution of (33) ask → ∞ (because of numerical
instabilities).

A second linear independent particular solutiong(2)k ; k = N,N − 1, . . . ,2, 1, 0 of (33)
calculated according to the above-mentioned procedure but which is obtained by starting
with a linearly independent initial condition:

g
(2)
N−1 = 0 g

(2)
N = 1 g

(2)
N+1 = g(2)N+2 = 0.

The general solution of (33) consisting of the particular onesg
(1)
k andg(2)k is given by

g−1 = K1 g
1
−1+K2 g

2
−1 g−2 = K1 g

1
−2+K2 g

2
−2

with two arbitrary andk-independent constantsK1,K2.
The eigenvalue conditions (37) are converted into

g−1 = g−2 = 0. (38)

The condition (38) is then held by

detA :=
(
g
(1)
−1 g

(2)
−1

g
(1)
−2 g

(2)
−2

)
= 0. (39)

Calculating this determinant by a variation ofλ̃, an eigenvalue is given by its zeros that is
indicated by a change of its sign. This zero-condition for the eigenvalue may be detected
by a Newton algorithm in the numerical calculations.
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5. Results

It is clear that we may consider two relevant intervals of the original equation inz, namely
the positive (denoted by+) and the negative (denoted by−) real half-axis. According to
our symmetry considerations we get two sorts of eigenvalue curves in theλ̃− a′-coordinate
systems for fixed values oft, c′ having theλ̃-coordinate as their symmetry axis.

As can be seen from the difference equation (33) the five-term recurrence relation
reduces to a three-term recurrence relation ifc = a+1 or c′ = a′

2 , respectively. In this case
there is a decoupling between the even and the odd valuesgk of (33).

If we interpret the differential equation as a Schrödinger one its potential has the form
of a double well the two wells of which are separated by an irregular singularity and thus
is the simplest potential that models the suppression of tunnelling fluxes from one well to
the neighbouring one. The parametera in this case is governing the asymmetry between
the two wells. If the value of the parametera exceeds a certain threshold (dependent on the
other parameters) there appear eigenvalues lying lower than the minimum of the higher well.
It should be mentioned that the corresponding eigenfunctions are generalized polynomials.

In the following we give some examples of our numerical calculations of the nontrivial
eigenvalues and eigenfunctions of the double confluent case of Heun’s differential equation
comparing them with the results of the asymptotics.

Figure 3 shows the behaviour of the determinant (39) in dependence on the eigenvalue
parameter̃λ. The zeros of this curve give rise to the eigenvalues as indicated. In figures 4–6
we exhibit the six lowest-lying eigenvalue curvesλ̃−a′ for c′ = 0 and fort = 1, t = 3, and
t = 10. The ground state is denoted 0 and the excited states are counted according to their

Figure 3. The function detA(λ̃) for t = 1, a′ =
0.5, c′ = 0, N = 100.

Figure 4. Asymptotic calculation of eigenvalue-
curves (t = 10, c′ = 0).
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Figure 5. Numeric calculation of eigenvalue-curves
(t = 10, c′ = 0).

Figure 6. Numeric calculation of eigenvalue-curves
(t = 3, c′ = 0).

Figure 7. Numeric calculation of eigenvalue-curves
(t = 1, c′ = 0).

Figure 8. Comparison between asymptotic and numeric
calculation in dependence oft for a′ = 0.5, c′ = 0.

numbern. The central two-point connection problem on the negative half-axis is denoted
by − and on the positive half-axis is denoted by+. Figure 7 gives the same curves with
the same parameters as figure 6 but as they result from the asymptotic calculation. Thus,
it should be compared with figure 6. Figure 8 gives a comparison between the asymptotic
calculation for large values oft and the numerical ones in dependence ont for fixed values
of a′ = 0.5, c′ = 0 for the three lowest-lying eigenvalues.
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6. Conclusion

The double confluent case of Heun’s differential equation exhibits several peculiarities: the
differential equation has two irregular singularities the s-ranks of both of which is 2. When
being placed at the origin and at infinity the differential equation becomes symmetrical
with respect to inversion at certain restrictions on the parameters. The generalized Jaffé
transformation creates an additional regular singularity at infinity. Such a form is appropriate
for solving the central two-point connection problems on the positive as well as on the
negative half-axis. The coefficients of the Jaffé expansions obey an irregular fourth-order
difference equation of the Poincaré–Perron type. We have shown that the exact eigenvalue-
condition for these boundary-eigenvalue problems may be obtained from the Birkhoff set
of this difference equation. Moreover, we elaborated a numerical procedure from which
we obtained the eigenvalues in dependence on the parameters. It is well understandable
but still important to stress that there is no effect of avoided crossing of the eigenvalues
in dependence on the asymmetry parameter since—spoken in physical terms—not only the
infinite but also the finite singularity is irregular and thus suppresses quantum tunnelling
fluxes.

The results of the calculations are compared with an asymptotic investigation of the
two-point connection problem. The latter is based on a quantization condition that was
developed by SYuS. As is shown graphically even the lowest asymptotic order is in good
agreement with the numerical results for values of the large parameter well below 10. In the
double confluent case of Heun’s differential equation the eigenfunctions reveal no Stokes
phenomenon on the entire complex plane of the argument in the sense that at Stokes lines no
other asymptotic solution is added to the existing one. As far as we know this has not been
discovered before neither for this, nor for any other equation, beyond the hypergeometric
class of equations.

Besides the above-mentioned symmetry we discovered another one that occurs with
respect to two of the three parameters. As a result the eigenvalue curves of the central
two-point connection problems on the positive and on the negative half-axis in dependence
on the asymmetry parameter become symmetrical with respect to the energy-parameter axis.

Eventually, we discovered a finite set of generalized polynomial solutions for certain
combinations of the parameters. These polynomials are not contained within the set of
classical orthogonal polynomials and thus do not seem to be known as yet.
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